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Abstract. A new analysis of the renormalized proton–neutron quasiparticle random phase approximation
based on simultaneous recalculation of the one-body density matrix and the pairing tensor has been used to
study the double beta decay. We demonstrated that inclusion of the quasiparticle correlations at the BCS
level reduces ground state correlations in the particle–particle channel of the proton–neutron interaction.
We also simplified the RQRPA equations significantly obtaining a low-dimensioned set of linear equations
for the quasiparticle densities. The formalism was applied to the double beta decay of 76Ge.

PACS. 21.60Jz HartreeFock and random-phase approximations – 23.40.Bw Weak-interaction and lepton
(including neutrino) aspects – 23.40.Hc Relation with nuclear matrix elements and nuclear structure

1 Introduction

The proton–neutron quasiparticle random phase approx-
imation (pn–QRPA) has been considered the most pow-
erful method for beta and double beta transition calcula-
tions of nuclear systems which are far away from closed
shells [1–8]. Especially, a remarkable success was achieved
by the QRPA approach in revealing the suppression mech-
anism of the neutrino accompanied double beta decay, a
long-standing problem of the theoretical treatment of this
process. Further development of the approach went be-
yond many shortcomings and refined calculations of nu-
clear matrix elements involved in the double beta decay.
Among others the following problems were set and solved:
particle number non-conservation [9,10], a role of the pro-
ton–neutron pairing [11], the higer-order corrections to
the ordinary QRPA [12–15], treatment of transitions to
final excited states [16–19], extension of the definition of
phonon operators by means of the so-called scattering
terms [20–23], etc.

Most of such improvements disregarded, however, the
main source of the formalism instability connected with
violation of the Pauli exclusion principle by using com-
mutation relations for the QRPA phonon operators. To
overcome this shortcoming of the pn–QRPA framework
the renormalization technique has been proposed [24] and
extended to include proton–neutron pairing [25]. This ap-
proach has been based on the early works by Hara [26],
Ikeda [27], Rowe [28] and Schuck and Ethofer [29] in the
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context of RPA and QRPA. The main goal of the method
called in the literature the renormalized QRPA (RQRPA)
is to use of a self-iteration of the QRPA equation to take
into account additional one-quasiparticle scattering terms
in the commutation relations. But this procedure results
in non-vanishing quasiparticle content of the ground state
and what follows some inconsistency between RQRPA and
the BCS approach since the ground state approximated
by the BCS state is chosen to be the quasiparticle vac-
uum. To minimize an influence of such a discrepancy one
needs to reformulate the BCS equations in a way proposed
in [30]. Combining both RQRPA and so modified BCS
one obtains the self-consistent BCS+RQRPA approach
(SRQRPA) which we study in more detail in this paper.

2 Formalism

This section recapitulates shortly the QRPA formalism
and its extensions. In the QRPA (either ordinary or renor-
malized) approach one assumes the harmonicity of the
nuclear motion and starts with the excited-state creation
phonon operators of the form [28,31]:

Qm†JπM =
∑
pn

[
Xm

(pn)JπA
†
(pn)JπM − Y

m
(pn)Jπ Ã(pn)JπM

]
, (1)

where Xm
(pn)Jπ and Y m(pn)Jπ are respectively, the forward-

going and backward-going variational amplitudes. The
operators A†(pn)JπM ≡ [a†pa

†
n]JπM are the angular-

momentum coupled two-quasiparticle creation operators.
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Since they do not fulfill the bosonic commutation relations
exactly, in the quasiboson approximation (QBA), that is
used to derive the usual QRPA equations, the Pauli prin-
ciple is violated. To avoid this serious drawback in the
improved version of the theory one introduces the renor-
malized operators [32]:

A†(pn)JπM ≡ D
−1/2
pn A†(pn)JπM , (2)

along with the renormalized amplitudes:

Xm(pn)Jπ ≡ D1/2
pn X

m
(pn)Jπ , (3)

Ym(pn)Jπ ≡ D1/2
pn Y

m
(pn)Jπ , (4)

where Dpn matrix is defined by the expectation value in
the RPA ground-state of the commutator:

Dpn ≡
〈

0
∣∣∣[A(pn)JπM , A

†
(pn)JπM ]

∣∣∣ 0〉 = (1−np−nn) (5)

together with the quasiparticle densities (̂a ≡
√

2ja + 1):

np ≡ ̂−1
p

〈
0
∣∣[a†pãp]00

∣∣ 0〉 , (6)

nn ≡ ̂−1
n

〈
0
∣∣[a†nãn]00

∣∣ 0〉 . (7)

The above equation has been derived using exact fermionic
commutation relations and thus goes beyond the ordinary
quasiboson approximation. One can prove easily that now
the following relation holds:〈

0
∣∣∣[A(pn)JπM ,A†(p′n′)J ′π′M ′ ]

∣∣∣ 0〉 = δpp′δnn′δJJ ′δππ′δMM ′ ,

(8)
i.e. the renormalized operators behave as bosons, at least
in the sense of the ground-state expectation value of their
commutator. The phonon operator now reads:

Qm†JπM =
∑
pn

[
Xm(pn)JπA

†
(pn)JπM − Y

m
(pn)JπÃ(pn)JπM

]
, (1′)

and using e.g. the equation of motion (EOM) method [28]
one gets the RQRPA equations of the usual form:(

A B
B A

)
Jπ

(
Xm
Ym

)
Jπ

= ΩmJπ

(
Xm
−Ym

)
Jπ
, (9)

with the new renormalized RPA matrices A and B defined
in [24]. Here ΩmJπ ≡ EmJπ−E0 is the RPA excitation energy
with respect to the ground state.

Although the renormalized RPA takes into account
the important coherent contributions that are connected
to the one-quasiparticle densities in the ground-state, it
misses other terms due to the restricted form of the
phonon operator (1). We namely dispose of the so-called
scattering terms, that are on the other hand retained in
the RQRPA. Inclusion of such terms, however, is not con-
ceptually straightforward and leads to much more elab-
orate theory [20–23], reaching beyond the RPA scheme.
Also no detailed calculation, trying to estimate the con-
tribution of the higher-order correlation terms associated

with the two-quasiparticle densities, has ever been per-
formed. There is, however, the widely accepted hope that
the corresponding corrections will be small due to a ran-
dom phase cancellation [28].

Now comes the question of the calculation of the Dpn

matrix entering the expressions for the RPA matrices A
and B. Using the mapping1

[a†pãp]00 7→ ̂−1
p

∑
JπMn

A†(pn)JπMA(pn)JπM , (10)

[a†nãn]00 7→ ̂−1
n

∑
JπMp

A†(pn)JπMA(pn)JπM , (11)

that preserves the commutation relations up to the second
order in the A and A† operators [32] and inverting (1)
one derives the following equations for the quasiparticle
densities:

np = ̂−2
p Ĵ2

∑
Jπmn

Dpn|Ym(pn)Jπ |2, (12)

nn = ̂−2
n Ĵ2

∑
Jπmp

Dpn|Ym(pn)Jπ |2. (13)

Inserting (5) into (13) one gets the following system of
linear equations for np and nn:

Y ′pnp +
∑
n

Ypnnn = Yp,

Y ′nnn +
∑
p

Ypnnp = Yn, (14)

or, in the matrix form:(
diag(Y ′(p)) Y
YT diag(Y ′(n))

)(
n(p)

n(n)

)
=
(
Y(p)

Y(n)

)
, (14′)

where

Ypn ≡
∑
Jπm

Ĵ2|Ym(pn)Jπ |2,

Yp ≡
∑
n

Ypn, Y ′p ≡ ̂2p + Yp, (15)

Yn ≡
∑
p

Ypn, Y ′n ≡ ̂2n + Yn.

It is worth mentioning, that the dimension of our linear
problem is only 2n× 2n, where n is the dimension of the
single-particle basis. This is of much advantage, since (14)
has to be solved many times as one should iterate between
(9) and (14) until convergence is achieved. The other way
round, inserting (13) into (5), as it is done by several au-
thors, e.g. [24,25], one obtains the equation:

Dpn = 1− ̂−2
p

∑
n′

Dpn′Ypn′ − ̂−2
n

∑
p′

Dp′nYp′n, (16)

1 An alternative way to derive the equations presented below
has been elaborated by Hara [26] and Rowe [28].
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that, on the contrary to the claim expressed in [24], can
be transformed into n2 × n2 linear system:∑

p′n′

Wpn,p′n′Dp′n′ = U, (17)

where

Wpn,p′n′ ≡ δpp′δnn′ + δpp′ ̂
−2
p Ypn′ + δnn′ ̂

−2
n Yp′n, (18)

and U is the vector of 1’s. In practice however, it takes
much less time to solve this system using standard linear
algebra procedures than following iteration methods, as
in [24,25]. But further reduction of the complexity of the
problem to the form of (14) allows us to take all possible
multipolarities into account for the calculation of the Dpn

renormalization factors. Although some of them are less
important and are neglected in [24,25], when one leaves
only a few, the J-coupling scheme breaks, since the basis
becomes uncomplete and the validity of the mapping (10)–
(11) is questionable. As we will see further, this reflects
itself in the results.

With non-vanishing quasiparticle content of the
ground state one arrives at the inconsistency between
RQRPA and BCS, since in the latter one assumes the
ground state to be the quasiparticle vacuum. One thus
needs to reformulate the BCS equations [30], namely by
recalculating the density matrix ρ and the pairing tensor
κ. With standard Bogoliubov–Valatin transformation [31]
they read now:

ρa ≡
〈
0
∣∣c†αcα∣∣ 0〉 = v2

a + (u2
a − v2

a)na, (19)
κa ≡ 〈0 |c̃αcα| 0〉 = uava(1− 2na), (20)

and depend on the quasiparticle densities na, where a runs
over proton or neutron indices. The u and v coefficients
are obtained now by minimizing the RQRPA ground-state
energy, that by virtue of the Wick’s theorem is expressed
as [31,33]:〈

0
∣∣∣Ĥ∣∣∣ 0〉 =

∑
a

̂2aεaρa (21)

+
1
4

∑
ab

̂âb
〈
(aa)T=1

Jπ=0+ |V |(bb)T=1
Jπ=0+

〉
κaκb

with the particle-number constraint:

N0 =
〈

0
∣∣∣N̂ ∣∣∣ 0〉 =

∑
a

̂2aρa. (22)

In the above equation εa are the single-particle energies
and

〈
(aa)T=1

Jπ=0+ |V |(bb)T=1
Jπ=0+

〉
are the matrix elements of

the two-body interaction.
This minimization is equivalent to solving a very nat-

ural equation from the EOM point of view [34]:〈
0
∣∣∣[Ĥ − λpẐ − λnN̂ ,Qm†JπM ]

∣∣∣ 0〉 = 0. (23)

We therefore dispose of the ground-state to be a quasipar-
ticle vacuum but rather choose such a Bogoliubov–Valatin

transformation that provides the optimal (i.e. consistent)
basis for RQRPA calculations, preserving the form of the
phonon operator (1). As already mentioned, inclusion of
e.g. scattering terms or higher-order terms in the QRPA
operator is possible but certainly beyond the scope of the
present study.

It is worth mentioning, that in our approach we
avoided an explicit construction of the ground-state wave
function. It can be feasible in some simple algebraic mod-
els [34], but in general approximations must be used to
close the system of coupled BCS+RQRPA equations. We
dropped the terms of order higher than quadratic in na
when evaluating (19)–(22), since these quantities are con-
sidered to be small. Indeed, our numerical calculations
support this claim.

The general scheme to solve the SRQRPA equations
is therefore to start from the ordinary BCS equations,
putting np = nn = 0, solve the corresponding RQRPA
problem (inner iteration), that gives us new quasiparticle
densities and loop with them back to BCS until the con-
vergence is achieved (outer iteration). We arrive thus at
the doubly-iterative problem and the question of efficient
and accurate getting through all the calculation steps be-
comes very important. We then stress again, that without
showing that the problem of calculating the D matrix can
be reduced to the linear system (14) of acceptable size the
realization of this task would be hardly possible.

The ground state to ground state 2νββ Gamow–Teller
matrix elements are expressed as follows:

M2ν
GT =

∑
mm′

2〈0+
f,gs||στ+||1+

m′〉〈1+
m′ |1+

m〉〈1+
m||στ+||0+

i,gs〉
Ωm1+ +Ωm

′
1+ +Qβ−(A,Z + 1)−Qβ−(A,Z)

,

(24)
where the charge-changing transition densities are:

〈0+
f,gs||στ+||1+

m′〉 = (25)∑
pn

〈p||σ||n〉(v′pu′nXm
′

(pn)1+ + u′pv
′
nYm

′

(pn)1+)
√
D′pn,

〈1+
m||στ+||0+

i,gs〉 = (26)∑
pn

〈p||σ||n〉(upvnXm(pn)1+ + vpunYm(pn)1+)
√
Dpn

and the overlap of intermediate excited states is assumed
to be expressed as:

〈1+
m′ |1+

m〉 =
∑
pn

(
Xm′(pn)1+Xm(pn)1+ − Ym

′

(pn)1+Ym(pn)1+

)
.

(27)
In the above the non-primed (primed) quantities result
from SRQRPA calculation based on initial (final) ground
state, respectively.

3 Results

To show the differences between the QRPA, the RQRPA
and the SRQRPA and to illustrate much better sta-
bility of the SRQRPA solutions we plot in Figs. 1–3
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Fig. 1. The dependence of the double Gamow–Teller matrix
element M2ν

GT on the renormalization factor in the particle–
particle channel gpp. Two different cases for gpp = 0.8 and 1.0
and for three different QRPA approaches are shown. Magni-
tude of the experimental estimate is marked by two parallel
dotted lines [35]

the results of our calculations as a function of particle–
particle (gpp) and particle–hole (gph) factors, renormal-
izing the bare two-body NN interaction. This commonly
used renormalization is necessary due to finite size of the
nucleus (the bare NN matrix elements are calculated for
the infinite nuclear matter) and due to the limited di-
mension of the single-particle basis. In our calculations
we used the two-body matrix elements calculated from
the Bonn–B nucleon–nucleon one boson exchange poten-
tial. The single-particle energies are calculated from the
Coulomb-corrected Woods–Saxon potential with Bertsch
parametrization. We used several sets of single-particle
levels to see how the choice of the basis influences the
results. We find weak dependence of the RQRPA and the
SQRPA results on the dimension of the single-particle ba-
sis. On the other hand the QRPA shows no stability with
respect to the chosen basis. The conclusion is that the
most suitable basis for the calculations of 2νββ decay of
76Ge consists of 16 levels with 16O as a core. Therefore we
used this basis in all the further studies described below.
To compare with the experiment we have adopted the ex-
perimental half-life of T 2ν

1/2 = (1.42±0.03±0.13)×1021 yr
from the latest measurement by the Heidelberg–Moscow
ββ cooperation [35].

In Fig. 1 we plot the calculated double Gamow–Teller
matrix elements M2ν

GT as a function of gpp for two differ-
ent gph values and for three different QRPA approaches.
We would like to stress that in these calculations in the
self-consistent iterations of the RQRPA and the SRQRPA
all the intermediate multipolarities were present. The
comparison between the QRPA, the RQRPA and the
SRQRPA results in the physically acceptable region of
the gpp parameter 0.8 ≤ gpp ≤ 1.2 shows two main fea-
tures of the renormalized QRPA. First, the inclusion of
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Fig. 2. The influence of the different number of the added
multipolarities on M2ν

GT for two types of the renormalization:
RQRPA and SRQRPA. Full range of the strength factor gpp is
scanned for fixed gph = 1.0. SRQRPA shows less dependence
on gpp parameter than the RQRPA approach. The experimen-
tal values [35] are between two parallel dotted lines

the ground-state correlations beyond QRPA is not only
improving the agreement between theoretical calculations
and experimental data but also causes the stabilization
of the dependence of M2ν

GT as a function of gpp. Second,
the iteration procedure for quasiparticle densities which
causes the treating RQRPA and BCS on the same footing
stabilizes the results even further.

Some authors claim that only the limited set of these
multipolarities plays a role in the evaluation of double
Gamow–Teller matrix elements [24,25]. In Fig. 2 there are
shown the results of calculations of M2ν

GT as a function of
gpp for different number of multipolarities for the RQRPA
and the SRQRPA, respectively. The basis is the same as in
Fig. 1, but the value of gph parameter is fixed to 1.0. It can
be seen why the inclusion of all multipolarities is essential
to obtain the reliable predictions of the RQRPA and the
SRQRPA calculations. The solid line in Fig. 2 represents
the QRPA calculations, dot-dashed line the calculations
with only 1+ multipolarity, dotted line with multipolar-
ities up to 2+, dashed line up to 3−, long-dashed up to
5− and thick solid line all considered multipolarities up
to 11+. The inclusion of higher multipolarities causes the
shift of the collapse of the RQRPA and the SRQRPA be-
yond the value of gpp = 1.0. The additional advantage of
the SRQRPA solutions is that calculated matrix elements
are less dependent on the gpp parameter.

In Fig. 3 the effect of including more multipolarities
Jπ in the RQRPA and the SQRPA calculations of M2ν

GT
for fixed gph = 1.0 is shown. Filled symbols represent the
calculations for gpp = 0.8 and open symbols for gpp = 1.0.
One can see the saturation effect for higher multipolarities.
The explanation of this behaviour is that higher multipo-
larities Jπ are less collective. Their contribution to the
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Fig. 3. Influence of addition of individual multipolarities (1+,
0+, . . . , 11+) on magnitude of the double Gamow–Teller matrix
element within two different RQRPA approaches. Calculations
shown for gpp = gph = 1.0. For details see text

ground-state correlations is much smaller than the lower
ones. An interesting feature is the virtual independence
of the matrix element on the number of multipolarities in
SRQRPA around gpp = 1.0. It is reflected in Fig. 2, where
one can see that RQRPA ”diverges” when going with gpp

from 0 to 1, while the SRQRPA ”converges”. This, in our
opinion, is a clear signal that the self-consistency between
BCS and RPA, i.e. between ground-state and excited-state
properties is being restored in SRQRPA.

Finally, we would like to address the question of the
Ikeda sum rule violation. It is well known, that in the usual
QRPA the Ikeda sum rule [27] is conserved exactly if all
the spin–orbit partners of the single-particle orbitals are
present in the basis, i.e.

S− − S+ ≡
∑
m

∣∣〈0+
gs||στ+||1+

m〉
∣∣2 −∑

m

∣∣〈0+
gs||στ−||1+

m〉
∣∣2

= 3(N − Z). (28)

The violation is marginal even if one or two of these
partners are omitted. But this is not the case in RQRPA,
where the Ikeda sum rule is violated up to 20% and is sim-
ilar in the SRQRPA. One can conclude, that the inclusion
of the ground-state correlations beyond RQRPA can not
restore the Ikeda sum rule. As already pointed out [34,36],
the scattering terms present in the β-decay operators can
be responsible for this effect. They appear to be very im-
portant to fulfill both the energy weighted and normal sum
rules in the case of homogeneous infinite nuclear matter
[22]. These terms give no contribution in QRPA, because
they are of quasiparticle–quasihole character, but should
be taken into account when the ground-state quasiparticle
densities are not assumed to be zero, like in the RQRPA
or SRQRPA. It is necessary to extend the form of the
QRPA phonon operator (1) by including new excitation
modes, the so-called B-modes [20–23]. The corresponding

extension of the theory is not straightforward and gives
some conceptual problems. Such an analysis requires fur-
ther discussion that is beyond the scope of the present
paper.

4 Summary and conclusions

We calculated the nuclear matrix elements for the neutrino
accompanied double beta decay to the ground state in a
frame of the new self-iterative BCS+RQRPA approach.
Using 2νββ decay of germanium 76Ge as an example we
demonstrated that the inclusion of the ground-state cor-
relations beyond QRPA causes the stabilization of the de-
pendence of the Gamow–Teller nuclear matrix element,
but also weakens their influence on their magnitude be-
cause of additional change of the quasiparticle densities
during the iteration procedure with the modified BCS so-
lution.

Unlike orthodox QRPA which needs fine tuning of the
gpp parameter describing the particle–particle interaction
strength as the matrix element collapses near the physical
strength, RQRPA and BCS+RQRPA gives stable matrix
elements over the whole range of physical strength and
thus these last approaches allow for more predictive power
than the old method.

Due to the development of the method of calculation
the Dpn normalization factors we could take all possible
multipolarities into account. Then we were able to avoid
the possibility of the J-scheme breaking, because by ne-
glecting some of the multipolarities the basis becomes un-
complete and the validity of mappings (10)–(11) is un-
der question. Our calculations are the first ones that in-
clude the full spectrum of the intermediate states in both
RQRPA and the BCS+RQRPA approaches.

This work has been supported in parts by the State Committee
for Scientific Researches (Poland), contract no. 2P03B05 16
and by the UMCS individual grant (A.B.).
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17. A. Bobyk, W.A. Kamiński, J. Phys. G 21, 229 (1995)
18. J. Toivanen, J. Suhonen, Phys. Rev. C 55, 2314 (1997)
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